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Abstract: Electricity markets are affected by rapidly changing structures, in
particular due to the increasing share of renewable energies. Hence, the use
of stationary time series models for modelling spot prices becomes more
and more questionable. As a step towards the tractability of non-stationary
time series we introduce in this paper a new class of stochastic processes
which can be used in situations where the time series data at hand exhibit a
non-stationary behaviour. These processes behave locally like classical
�-stable processes although the parameters can vary over time. We illustrate
the estimation of such processes using a straightforward maximum likelihood
approach. Moreover, we show how the model can be applied to electricity
spot prices. The approach of the paper can be transferred to other areas of
applications and, therefore, should open the door to a new way of handling
real-life phenomena with nonstationary behavior.

Keywords: Electricity prices-independent increment process-non-stationary
process-time-varying parameters.

1. Introduction

Stationary time series models are used in statistics to describe phenomena and their timely
development in many areas of our daily life. The idea behind these models is that there is no
structural change or break of these phenomena over time, at least after disentangling deterministic
patterns as trends or seasonality from the stochastic component. However, in a world of rapidly
changing structures in all areas of business and economics, the use of such stationary time series
models becomes more and more questionable in many applications and might lead to a systematic
underestimation of risk.

Electricity markets which are - compared to classical financial markets - relatively young. The
trading rules at energy exchanges are adapted regularly and are subject to change as well as the
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strategies of the traders, so that it can hardly be assumed that the observed stochastic price processes
are stationary. The development of the markets as well as the increasing production of renewable
energies indeed seem to create a systematic change of the behaviour of the electricity prices. For
general introductions to statistical modeling of electricity markets see, for instance, Benth et al.
(2008) and Weron (2006).

In view of these facts, we define and investigate in this paper a new class of processes, where
the parameters of the classical �-stable process can vary over time, i.e. they follow deterministic
functions which possibly incorporate an, in principle, arbitrary number of unknown parameters.
The �-stable processes are attractive in many applications, since on the one hand they belong to the
class of Lévy processes and on the other hand their increments allow for more extreme events, as
the parameter ��� (0, 2] decreases from its upper limit 2. In addition, when one uses the parameter
��= 2, one gets back to the widely used Brownian motion. A broad overview over the theory of
classical �-stable processes can be found in Samorodnitsky and Taqqu (1994).

In general, the treatment of non-stationary time series is gaining more and more attention, and
different approaches can be found in the literature. The idea to have locally approximately a stationary
process was already used in the theory of processes with evolutionary spectra, cf. Priestley (1965),
where the processes are defined via a time varying spectral representation. Another approach is
taken in Dahlhaus (2012) and Dahlhaus et al. (2017) where locally stationary processes are defined
using infill-asymptotics from nonparametric statistics. This idea is, however, quite different from
our approach, since locally stationary processes are based on discrete-time models as, e.g., classical
autoregressive models like AR(1). Furthermore, some literature employs classical time series models,
but replaces the constant parameters by time-varying versions. A recent paper of this type is Müller
and Uhl (2021) which define time-varying stochastic volatility models with �-stable innovations,
in the classical discrete time setup. Our approach uses, in contrast to all those other ideas, the
theory of additive processes, i.e. of continuous-time processes with independent, but not (necessarily)
stationary increments. Hence, we can employ a much broader class of processes than the widely
used Lévy processes which necessarily have stationary increments. Some theoretical basics of
additive processes in general can be found, e.g., in Sato (1999).

The paper is organized as follows. In Section 2 we define the class of the nearly �-stable
additive (NASA) processes and prove existence. In Section 3 we simulate NASA processes and
investigate the quality of maximum likelihood estimates of the parameters. Moreover, we replace
the �-stable process from Benth et al. (2014) and Müller and Seibert (2019) by a NASA process
and check the quality of the Bayesian posterior mean estimates in a simulation study. In Section 4
we apply the new model to electricity data from the EEX. Section 5 concludes.

2. Nearly -stable Additive Processes

In this section we merge the concept of time-varying parameters with �-stable processes which
have been used in Benth et al. (2014) and Müller and Seibert (2019) for modelling electricity spot
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prices. The idea of these papers is to use a continuous-time autoregressive moving-average (CARMA)
process to describe the behaviour of electricity prices. The CARMA process is driven by an �-stable
Lévy process, to capture the price spikes.

In order to gain exibility about the spike distribution we want to allow for time varying
parameters in the �-stable process. Whereas this formally can be done quite easily, we have to
check whether the resulting process is a mathematically reasonable object. In particular, we need
the resulting process to be e.g. a semimartigale, since we want it to drive the CARMA process, via
stochastic integration.

Hence, in the following, we care about a mathematically sound definition of �-stable processes
with time-varying parameters and the desired semimartingale property.

Belonging to the class of classical Lévy processes, also �-stable processes are characterized
by the Lévy triplet (g, �, �). This triplet shows that a Lévy process can be interpreted as consisting
of three independent components: a linear drift, a Brownian motion, and a Lévy jump process. In
case of the �-stable process the Brownian component vanishes and the Borel measure is specied as

� (x) = (c–1x<0 + c+1x>0)/�x�
1+�,

for parameters c–, c+ � 0 and ��� [0; 2]. The limit case � = 2 corresponds to the Brownian motion.
In order to give up the property of Lévy processes of having stationary increments, we replace

the parameters �, c+, c– and g by time-dependent variables (t), c+(t), c–(t) and g(t), respectively.
This way we derive in the following a fairly general subclass of additive processes in law, by
applying a time-space approach.

Let  : [0, �) � (0, 2) and c± : [0, �) � [0, �) be Borel functions. Moreover, introduce
functions c* := c– + c+ : [0, �) � [0, �) and c� := c+ – c– : [0, �) � �, and set c(t, x) := c–(t)1x<0 +
c+(t)1x>0.

Given the functions  and c, introduce now another Borel function  : [0, �) × �* ��[0, �) by
setting

(t, x) := c(t, x)/�x�1+ (t), t � 0, x � �*.
To this function we associate a nonnegative Borel measure � on [0, �) × �* in time-spaceb by

setting

( ) : ( , )� �� �A
A t x dtdx�  for Borel A � [0, �) × �*.

For t > 0, let �
t
 be the time-projected measure associated to �, i.e. the Borel measure on �*

dened by

�
t
(B) := �([0, t] × B) = [0, ]

( , )
�

�� � t B
s x ds dx  for Borel B � �*.

Based on this time-projected measure and a given deterministic function g : [0, �) � �, we
can now state necessary and sufficient conditions in terms of g,  and c* to ensure the existence of
an additive process L associated to pairs (g, �).
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Theorem 1: Suppose t � g(t) is continuous on [0, �) with g(0) = 0. There exists (uniquely up
to identity in law) an additive process (L

t
)

t�0 with Lévy triplet (g(t), 0, �t)t�0 if and only if
(A). (c– + c+)/a and (c– + c+)/(2 – a) are locally (Lebesgue) integrable on [0, �).
Proof: It holds that, for t � 0, and with c* = c– + c+

�
t
((–�, 1)�(1, �)) = 

* *
1 ( )[0, ] 1 [0, ]

( ) ( )
,

( )a st t

c s c s
dxds ds

x a s

�

� �� � �
and, also,

2 * *
( ) 10 1 [0, ] 0 1 [0, ]

( ) ( )
( ) .

2 ( )�� � � �
� �

�� � � �t a sx t x t

c s c s
x dx dxds ds

x a s
�

Now use Sato (1999), Thm. 9.8 and Rem. 9.9.
We are now prepared to introduce the notion of nearly alpha stable additive (NASA) processes.
Definition 1: We write L ~ NASA( , c, g), if, simultaneously, g is continuous with g(0) = 0,

c±/ �and c±(2 – ) are locally (Lebesgue) integrable on [0, �) and L = (L
t
)

t�0 is the associated
additive process in Theorem 1.

If the associated additive process L ~ NASA( , c, g) in Theorem 1 exists, then the characteristic
exponent of its increments is, for t > s > 0, obviously given by

0 1( , ]
( ) ( ( ) ( )) ( 1 1 ) ( , ) ,�

� � ��
� � � � � � � � �� � �t s

i x
L L xs t

i t s e ix u x dxdug g   ��� �*. (1)

Moreover, matching the characteristic functions, one can easily show that that the class of
strictly �-stable Lévy processes is a subclass of the NASA-processes. More precisely, if t � g(t) =
tg(1) is a linear function, while both (t) ����� (0, 2) and c± (t) ��c± � 0 are constant functions with
c* � 0, then the associated NASA( , c, g)-process L is an �-stable Lévy process.

In view of many theorems which hold for semimartingales we now care about the question
whether NASA processes are semimartingales.

Theorem 2: Assume (A), and suppose g is continuous with g(0) = 0. The process L ~ NASA( ,
c, g) is a semimartingale if and only if g is locally of finite variation.

Proof: Use Jacod and Shiryaev (2003), Thm. II.4.14.
In particular, this property guarantees that we can integrate w.r.t. NASA processes. This feature

is important when we replace the driving Lévy process in CARMA processes by a NASA process
to make the model more flexible. Note that there are different parametrizations of the �-stable
process which are commonly used. Whereas for our theoretical investigations the ( , c, g)-
parametrization used above is convenient, the socalled ( , , , )-parametrization is better
interpretable in practical applications. Here,  denotes the scale parameter,  the skewness parameter,
� the location parameter. Both parametrizations can be transformed into each other, and the shown
properties of NASA-processes are, of course, independent of the used parametrization. Hence, in
Sections 3 and 4, we will exclusively use the ( , , , )-parametrization, i.e. using functional
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parameters , ,  instead of c+, c–, g while  remains unchanged. This enables us to interpret the
results more easily regarding skewness and scaling, by looking at the parameters  and , respectively.

3. Simulation and Estimation of NASA Processes

We first illustrate how NASA processes behave. Moreover, we are interested in the quality of the
estimates, when the time-varying parameters are reestimated from simulated data using the maximum
likelihood method.

In this section we assume that
(t) = min(�start + t(�end – �start)/10000, �end),

(t) = max((�start + t(�end – �start)/10000, �end),

and that � 1 and �� 0.
These functions are locally Lipschitz continuous so that the associated NASA process exists

as a well-defined semimartingale.
First, we approximate a NASA process based on the functions above by simulating independent

increments for the intervals [t, t + �t], t = 0, �t, 2�t ..., 99999�t for �t = 0:01 from corresponding
�-stable distributions with parameters (t + �t/2), (t + �t/2), �� 1, �� 0. Figure 1 shows the
result for �start = 1.5, �end = 1.8, �start = 0.8, �end = –0.8. From the lower plot it is clearly to see that the
spikes are much more pronounced at the beginning than at the last part of the series, and that the rst
period shows mainly upward spikes, the middle period upward spikes as well as downwards spikes,
whereas the last period shows mainly downward spikes.

Figure 1: Simulation of NASA process with time-varying stability and skewness functions.
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Next we try to estimate the parameters of a NASA process by maximum likelihood. To this
end, we use the package stabledist of the statistics software R, where an approximation of the stable
densities is available. The functions  and  are parameterized as before by

(t) = �start + t(�end – �start)/10000, (t) = �start + t(�end – �start)/10000.
In addition, we assume ����� to be time-invariant and unknown. To check the quality of this

straight-forward estimation procedure we simulate 1000 data sets, each of length 10000, using the
parameter values given in Table 1, and re-estimate the five parameters from the data by ML. The
means and standard deviations over the 1000 ML estimates are shown in Table 1.

Obviously, we can estimate the unknown parameters of the NASA process quite well. The
largest standard deviation is found for end, which can easily be explained by the fact, that the
parameter end is 1.8, i.e. relatively close to 2. For a stability parameter � = 2, however, the skewness
parameter loses its meaning completely, i.e. it cannot be estimated at all.

4. Application to Electricity Spot Price Data

Possible applications of the NASA processes can be found in situations, where Lévy processes are
involved to model data which exhibits an unstationary behaviour. As an example, we focus here on
electricity spot and futures prices.

The electricity markets shows specific features which differ from the behaviour of time series
at classical financial markets. The most important features of electricity prices are: extreme spikes,
possibly negative prices, and quick mean reversion. For all of these features there is (basically) one
reason: the balance between demand and supply which is extremely sensitive due to the fact that
energy cannot be stored (at least currently not to a larger extent). Whereas positive spikes occur
when the supply suddenly breaks down (e.g. by a failure of a power plant), negative prices occur
when the demand is unexpectedly much lower than the current electricity production. After fixing
an imbalance problem, the price usually quickly returns to a mean level determined by a well-
working supply and a demand as predicted.

In order to describe electricity prices several stochastic models have been developed. Benth et
al. (2014) use a three-component additive model, consisting of a deterministic trend and seasonality

Table 1: Means and standard deviations over 1000 ML estimates for the ve unknown
parameters for 1000 simulated data sets

Parameter True Mean sd

�
start

 1.50 1.5039 0.0262

�
end

1.80  1.8009 0.0263

�
start

0.20 0.2046 0.0440

�
end

–0.20 –0.2047 0.0569

� 1.00 1.0003 0.0097
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function, a CARMA process driven by an �-stable Lévy process for the spikes, and an additional
NIG process for more flexibility in the long-term behaviour. Using the same model (with a more
sophisticated seasonality function), Müller and Seibert (2019) developed a Bayesian estimation
procedure. In the following, we use this estimation algorithm, since it can easily be adapted for our
situation, and try to find out whether one should replace the driving �-stable (Lévy) process in the
electricity price model by a NASA process. While referring to the two cited papers for the details,
we will now briefly summarize model specications for the reader’s convenience.

4.1 Electricity Spot and Futures Price Model

In Benth et al. (2014), the electricity spot price S
t
 is modelled on a continuous time scale and is

decomposed into the sum

S
t
 = �

t
 + Y

t
 + Z

t
,

where �
t
 accounts for all trend and seasonal components, Y

t
 is a CARMA(2,1) process, i.e. a

continous-time ARMA process, which accounts for the large price spikes present in electricity spot
price data and which is driven by a Lévy process L

t
, and Z

t
 is a Lévy process modelling long-run

(but not seasonal) deviations from the mean price.
The trend and seasonality function writes

�
t
= trend

0 week seasons( ) ( ),
365.25

t
t t

�
� � � � � �

where
�week(t) = [�

Tu
�

Tu
(t) + ... + �

Su
�

Su
(t)] (1 – �

ho
(t)) + �

ho
�

ho
(t)

�seasons(t) = 
2

1

2 2
cos sin

365.25 365.25n n
n

tn tn
c s

�

� �� �� � � ��� � � �� �� � � �� �
�

+ �summer�[Jul 29–Aug 21](t) + �Dec�[Dec 24–31](t) + �Jan�[Jan 1–6](t).

Here, the functions �. (�) denote indicator functions for the weekdays Tuesday to Sunday, for
public holidays, and for special periods with lower electricity consumption in the summer and
around Christmas. Hence, altogether, the trend and seasonality function �t contains 16 parameters.

The Lévy process (Z
t
) is specied as an NIG process with the parameters �NIG > 0 (tail heaviness),

�NIG � [–�NIG, �NIG] (skewness), �NIG > 0 (scale) and �NIG (shift). In order to avoid an identication

problem with the trend function, �NIG is fixed at 2 2
NIG NIG NIG NIG/�� � � �� , and only three parameters

have to be estimated for the process (Z
t
).

To disentangle the sum of (Y
t
) and (Z

t
), futures prices are used. Theoretical considerations

using general arbitrage theory lead to the formula

2

140 2 1

1 1ˆ ( , ) ,
{ 40} 365.25

T Q
t T

u

u
Z F t u d C

u T T �
�

�� �� � � � � �� �� �� �
� � (2)
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where F(t, u) is the futures price at time t with time to maturity u and [T1, T2] is the delivery period
(with T2 – T1 representing exactly one calendar month) of the electricity future calculated from the
actual time t and the time to maturity u. Hence, two new parameters �

Q
 := �

Q
 [Z(1)] (expectation

under a risk-neutral measure Q) and C (shift parameter for futures) are used here.
Finally, the CARMA(2, 1) process can be described by its state-space representation

Y
t
= bTXt

dXt = AXt dt + ep dL
t

where

bT = (b0, 1), e2
T = (0, 1) and A = 

2 1

0 1
.

a a

� �
� �� �� �

Benth et al. (2014) have chosen an �-stable Lévy process L to capture the extreme spikes in
the electricity spot prices, which decrease always relatively quickly again after occurrence. Using
various model verification techniques, they have shown that the model describes the electricity
market very well.

However, fitting the model to electricity spot prices by the method developed in Müller and
Seibert (2019), and conducting a running window analysis (cf. Fig. 2) with window length 2 years
(shifted by 13 weeks each), one can see that the parameters � and � are most likely not constant
over time. Whereas the stability parameter � seems to increase signicantly, the skewness parameter
��turns from positive to negative values. This is in accordance with the observation that formerly
the spikes were mainly upwards, whereas nowadays the spikes are mostly downwards.

Hence, we replace the �-stable process L in the model by a NASA process as introduced in
Section 2. For describing the timely variation in the parameter � we use

(t) = �start + st/T,
with T = 2922 (representing the number of observations), whereas we use two dierent approaches
for the parameter �:

Exponentially shaped:
(t) = 2 – (2 – �start) exp(–rt/T), (3)

Linearly shaped:

(t) = 
start / .rt T� � � (4)

In both setups we need three CARMA parameters (b0, a1, a2) and 5 parameters for the driving

NASA process (�start, ( , resp.)r r� , �start, s, �).
Müller and Seibert (2019) give explicit expressions for the likelihood of the model. Since the

CARMA part is estimated using the likelihood from a corresponding ARMA process (see also
Benth et al. (2014)), we can easily replace this likelihood by the (approximative) likelihood for the
NASA process, where we assume that, locally on very small time intervals, �-stable increments
can be used instead of the (true) NASA increments. This seems justied since in our setup the
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parameters � and � change only very slowly over time (relatively to the total number of observations).
Using the Bayesian framework we will be able to decide whether one of these two possibilities

is superior for modelling the data set at hand, and most importantly, whether we need an additive
process at all. However, before we apply the model to electricity price data, we conduct some
simulations in order to assess the quality of the Bayesian estimates for all model parameters when
the driving �-stable Lévy process in the electricity price model is replaced by a NASA process. In
particular, we are interested how well the NASA parameters can be reconstructed from this data in
such a complex model.

4.2 Simulations

We now simulate 100 data sets from the full spot price model with 3000 observations, and assume
that (t) follows Equation (3). We have chosen the true parameters to be realistic in view of electricity
price data as analysed later. The model parameters are fitted to the simulated data sets using the
Markov chain Monte Carlo method by Müller and Seibert (2019) adapted to the NASA driven
CARMA process as described above.

Figure 3 shows density estimates for the 100 posterior mean estimates each together with the
corresponding true values (vertical dashed lines) and the means over the 100 posterior mean estimates
(vertical solid lines). Obviously, we can estimate all parameters quite precisely on average, since
the two vertical lines in each subplot are always close to each other and even overlap in a few cases.
The variation around the true values can be reduced by using more observations.

Figure 2: Rolling window analysis for electricity spot price data: posterior mean estimates together
with 5% and 95% quantiles. Original electricity spot prices in the background.
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4.3 Empirical Results

In this section we analyse electricity base spot prices from the EEX for the years 2002 to 2014
using the two setups described by Equations (3) and (4).

Table 2 reports posterior mean estimates for the 29 model parameters, together with 95%
credibility intervals, for both model setups. As expected, the NIG, CARMA, seasonality and futures
parameters are only slightly affected if one switches from the exponentially shaped to the linearly
shaped function . Most interestingly for our analysis and the motivation of this paper is, that the
95% credibility intervals for r, r� , and s each do not contain 0. This means that the functions  and

 and are indeed not constant over time, and replacing the Lévy process L by a NASA process is
statistically a clear improvement for describing electricity data. To compare the two setups, we use
the AIC criterion evaluated in each iteration of the MCMC procedure. The mean and the 2.5% and
97.5% quantiles are also reported in Table 2. From the means one can see that the linear setup is
slightly better, although there is statistically no significant difference between the two setups (for
this data set), as can be concluded from the corresponding quantiles.

Figure 4 shows estimated posterior densities for the four parameters in the driving NASA
process for both setups. Figure 5 displays the estimated stability function  and skewness function
�based on the posterior mean estimates for both the exponential (dashed lines) and the linear setup

(solid lines). Due to the small positive rate parameter r there is hardly any difference between the
two approaches for this data set. Moreover, the curves show again that the assumption of constant
values for � and � would be unrealistic. Hence, using an additive process as NASA contributes to
a more realistic modelling of electricity prices and, in consequence, to a more accurate risk
management for both producers and consumers of energy.

5. Summary

In this paper we defined the class of NASA processes, a class of additive processes, which behave
locally similar to �-stable processes, but allow the stable parameters to vary over time. Under mild
conditions, the NASA processes are semimartingales. As we have seen in simulation studies, we
can estimate NASA processes with smoothly changing parameters - the case which seems most
relevant for practical applications.

The paper opens a door to handle real-life appliations with nonstationary behavior using a
generalization of �-stable processes. The basic idea is quite general and could be used to define
other additive processes which mimic locally the behavior of any corresponding Lévy process.
Since we a faced with rapidly changing structures in many areas of business and economics, our
approach may help to describe phenomena more realistically and, therefore, to improve risk
management.
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Table 2: Parameter estimates for EEX data, together with AIC, based on 20000 MCMC iterations.

�exponentially shaped �linearly shaped

Parameter Post. mean 95% cred. Interval Post. mean 95% cred. Interval

�
start

1.44661 .3442 1.5453 1.4274 1.3347 1.5156
�

start
0.0606 –0.0332 0.1664 0.0609 –0.0326  0.1406

r 0.4080 0.0762 0.7211

r� 0.2345 0.0664 0.4127
s –0.3769  –0.5560 –0.2145 –0.3613  –0.5163 –0.1948

�  4.1884 3.9967 4.4027 4.1654 4.0164  4.3605

a
1

0.5637 0.4534 0.7524 0.5403 0.4532 0.7149
a

2
0.0110 0.0018 0.0350 0.0084 0.0009 0.0300

b
0

0.0660 0.0226 0.1650 0.0559 0.0195  0.1492

�
NIG

0.7951  0.6844 0.9296 0.7782 0.6713 0.8923
�

NIG
0.0179 –0.0399 0.0733 0.0210 –0.0364 0.0758

�
NIG

0.3254 0.3012 0.3503 0.3223 0.2995 0.3439

�
summer

–2.9481 –4.4193 –1.6999 –3.0602 –4.3955 –1.8141
�

Dec
–8.9864 –11.0709 –6.8850 –8.9926 –11.2761 –6.7782

�
Jan

–8.2983 –10.7545 –5.6565 –8.7383 –11.1939 –5.7888
c

1
–5.1713 –5.6449 –4.7865 –5.1649 –5.6067 –4.7264

s
1

0.0760 –0.2667 0.4266 0.0724 –0.3095 0.4738

c
2

0.8089 0.4266 1.2259 0.7921 0.41161 1.2217
s

2
0.7700 0.3149  1.2261 0.7553 0.3192 1.2043

�
trend

–0.0029 –0.0142 0.0086 –0.0034 –0.0154 0.0096

�
Tu

1.6707 1.2502 2.0754 1.6286 1.1970 2.1042
�

We
1.6509 1.1135 2.1795 1.5683 1.0220  2.1454

�
Th

1.0675 0.5382 1.6019 1.0309 0.5078 1.6159

�
Fr

–0.7424 –1.2842 –0.1220 –0.7516 –1.3801 –0.1164
�

Sa
–8.2988 –8.8047 –7.7554 –8.3382 –8.8725 –7.7202

�
Su

–14.7749 –15.2420 –14.2885 –14.7619 –15.1650 –14.2581

�
ho

–10.8910 –11.9640 –9.8327 –10.9139 –11.9113 –9.8733
�

0
20.3262 17.1624 22.8040 19.2654 15.1151 22.9251

�
Q

0.0147 0.0026 0.0262 0.0152 0.0020 0.0281

C 5.6766 3.2168 8.8374 6.7118 3.2395 10.9649

AIC 34054.72 34042.61  34071.03 34052.92 34038.16 34071.99
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